A generalized Conner–Floyd conjecture and the immersion problem for low 2-torsion lens spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On the Immersion Problem for Real Projective Spaces

Hence, and from the Hurwitz-Radon theorem, it follows that if P' can be immersed in (2j — k)-space, when j + 1 is a power of 2, then P admits a fc-field of linearly independent tangent vectors. Our method is based on the work of Adams [ l ] , Atiyah [2] and Hopf [6]. In [3] Atiyah has proved, by the method of exterior powers, that P' cannot be immersed in (2j —£)-space where p is approximately ...

متن کامل

A new perspective to the Mazur-Ulam problem in $2$-fuzzy $2$-normed linear spaces

In this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-Lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. Also, we give anew generalization of the Mazur-Ulam theorem when $X$ is a $2$-fuzzy $2$%-normed linear space or $Im (X)$ is a fuzzy $2$-normed linear space, thatis, the Mazur-Ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...

متن کامل

The concentration function problem for $G$-spaces

‎In this note‎, ‎we consider the concentration function problem for a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$‎. ‎We prove a necessary and sufficient condition for the concentration functions of a‎ ‎spread-out irreducible probability measure $mu$ on $G$ to converge to zero.

متن کامل

Generalized Aggregate Uncertainty Measure 2 for Uncertainty Evaluation of a Dezert-Smarandache Theory based Localization Problem

In this paper, Generalized Aggregated Uncertainty measure 2 (GAU2), as a newuncertainty measure, is considered to evaluate uncertainty in a localization problem in which cameras’images are used. The theory that is applied to a hierarchical structure for a decision making to combinecameras’ images is Dezert-Smarandache theory. To evaluate decisions, an analysis of uncertainty isexecuted at every...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2003

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(02)00084-8